2,404 research outputs found

    Simultaneous dual-element analyses of refractory metals in naturally occurring matrices using resonance ionization of sputtered atoms

    Get PDF
    The combination of secondary neutral mass spectrometry (SNMS) and resonance ionization spectroscopy (RIS) has been shown to be a powerful tool for the detection of low levels of elemental impurities in solids. Drawbacks of the technique have been the laser-repetition-rate-limited, low duty cycle of the analysis and the fact that RIS schemes are limited to determinations of a single element. These problems have been addressed as part of an ongoing program to explore the usefulness of RIS/SNMS instruments for the analysis of naturally occurring samples. Efficient two-color, two-photon (1+1) resonance ionization schemes were identified for Mo and for four platinum-group elements (Ru, Os, Ir, and Re). Careful selection of the ionization schemes allowed Mo or Ru to be measured simultaneously with Re, Os, or Ir, using two tunable dye lasers and an XeCl excimer laser. Resonance frequencies could be switched easily under computer control, so that all five elements can be rapidly analyzed. In situ measurements of these elements in metal grains from five meteorites were conducted. From the analyses, estimates of the precision and the detection limit of the instrument were made. The trade-off between lower detection limits and rapid multielement RIS analyses is discussed

    Thermoelectric power factors of nanocarbon ensembles as a function of temperature

    Get PDF
    Thermoelectric power factors of nanocarbon ensembles have been determined as a function of temperature from 400 to 1200 K. The ensembles, composed of mixtures of nanographite or disperse ultrananocrystalline diamond with B 4 C B4C , are formed into mechanically rigid compacts by reaction at 1200 K with methane gas and subsequently annealed in an argon atmosphere at temperatures up to 2500 K. The ensembles were characterized using scanning electron microscopy, Raman, x-ray diffraction, and high resolution transmission electron microscopy techniques and found to undergo profound nanostructural changes as a function of temperature while largely preserving their nanometer sizes. The power factors increase strongly both as a function of annealing temperature and of the temperature at which the measurements are carried out reaching 1 µW/K 2 ¿cm 1 µW/K2¿cm at 1200 K without showing evidence of a plateau. Density functional “molecular analog” calculations on systems based on stacked graphene sheets show that boron substitutional doping results in a lowering of the Fermi level and the creation of a large number of hole states within thermal energies of the Fermi level [P. C. Redfern, D. M. Greun, and L. A. Curtiss, Chem. Phys. Lett. 471, 264 (2009)]. We propose that enhancement of electronic configurational entropy due to the large number of boron configurations in the graphite lattice contributes to the observed thermoelectric properties of the ensembles

    Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films

    Get PDF
    Further progress in the development of the remarkable electrochemical, electron field emission, high-temperature diode, and optical properties of n-type ultrananocrystalline diamond films requires a better understanding of electron transport in this material. Of particular interest is the origin of the transition to the metallic regime observed when about 10% by volume of nitrogen has been added to the synthesis gas. Here, we present data showing that the transition to the metallic state is due to the formation of partially oriented diamond nanowires surrounded by an sp2-bonded carbon sheath. These have been characterized by scanning electron microscopy, transmission electron microscopy techniques (high-resolution mode, selected area electron diffraction, and electron-energy-loss spectroscopy), Raman spectroscopy, and small-angle neutron scattering. The nanowires are 80–100nm in length and consist of ~5nm wide and 6–10nm long segments of diamond crystallites exhibiting atomically sharp interfaces. Each nanowire is enveloped in a sheath of sp2-bonded carbon that provides the conductive path for electrons. Raman spectroscopy on the films coupled with a consideration of plasma chemical and physical processes reveals that the sheath is likely composed of a nanocarbon material resembling in some respects a polymer-like mixture of polyacetylene and polynitrile. The complex interactions governing the simultaneous growth of the diamond core and the sp2 sheath responsible for electrical conductivity are discussed as are attempts at a better theoretical understanding of the transport mechanism

    Calculation of the Phase Behavior of Lipids

    Full text link
    The self-assembly of monoacyl lipids in solution is studied employing a model in which the lipid's hydrocarbon tail is described within the Rotational Isomeric State framework and is attached to a simple hydrophilic head. Mean-field theory is employed, and the necessary partition function of a single lipid is obtained via a partial enumeration over a large sample of molecular conformations. The influence of the lipid architecture on the transition between the lamellar and inverted-hexagonal phases is calculated, and qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.

    Obesity: A Biobehavioral Point of View

    Full text link
    Excerpt: If you ask an overweight person, “Why are you fat?’, you will, almost invariably, get the answer, “Because 1 eat too much.” You will get this answer in spite of the fact that of thirteen studies, six find no significant differences in the caloric intake of obese versus nonobese subjects, five report that the obese eat significantly less than the nonobese, and only two report that they eat significantly more

    A stacking-fault based microscopic model for platelets in diamond

    Get PDF
    We propose a new microscopic model for the {001}\{001\} planar defects in diamond commonly called platelets. This model is based on the formation of a metastable stacking fault, which can occur because of the ability of carbon to stabilize in different bonding configurations. In our model the core of the planar defect is basically a double layer of three-fold coordinated sp2sp^2 carbon atoms embedded in the common sp3sp^3 diamond structure. The properties of the model were determined using {\it ab initio} total energy calculations. All significant experimental signatures attributed to the platelets, namely, the lattice displacement along the [001][001] direction, the asymmetry between the [110][110] and the [11ˉ0][1\bar{1}0] directions, the infrared absorption peak BB^\prime, and broad luminescence lines that indicate the introduction of levels in the band gap, are naturally accounted for in our model. The model is also very appealing from the point of view of kinetics, since naturally occurring shearing processes will lead to the formation of the metastable fault.Comment: 5 pages, 4 figures. Submitted for publication on August 2nd, 200

    Exploring attitudes to edgy urban destinations: the case of Deptford, London

    Get PDF
    The role of tourists and tourism in urban development is not fully understood. Research has focused on tourism districts within city centres, but less is known about tourism in peripheral, less affluent urban districts. These areas can appeal to visitors as edgy alternatives to mainstream destinations. This study establishes who is interested in visiting and why, and it explores the underlying rationale for negative attitudes. The aims are addressed by an in-depth analysis of Deptford in South East London. This area is a relatively deprived part of a world city, albeit one that has long been earmarked as London's next cool district. The study uses a mix of different sources to analyse the case. Responses to a New York Times article on Deptford are analysed and the attitudes of actual visitors and key stakeholders are explored. The discussion includes an examination of different interpretations and attitudes towards the notion of edginess. Edginess is deemed attractive by certain audiences; something linked to a reverence for working-class life in the arts. The study concludes that, whilst edginess is a noted characteristic, what people appreciate about Deptford is its ‘distinctive ordinariness’ – its contrast with more polished and contrived urban districts
    corecore